Isolation of locally derived stem/progenitor cells from the peri-infarct area that do not migrate from the lateral ventricle after cortical stroke.
نویسندگان
چکیده
BACKGROUND AND PURPOSE Neurogenesis can arise from neural stem/progenitor cells of the subventricular zone after strokes involving both the cortex and striatum. However, it is controversial whether all types of stroke and strokes of different sizes activate neurogenesis from the subventricular zone niche. In contrast with cortical/striatal strokes, repair and remodeling after mild cortical strokes may involve to a greater extent local cortical stem/progenitor cells and cells from nonneurogenic niches. METHODS We compared stem/progenitor cell responses after focal cortical strokes produced by distal middle cerebral artery occlusion and cortical/striatal strokes produced by the intraluminal suture model. To label migrating neuroblasts from the subventricular zone, we injected DiI to the lateral ventricle after distal middle cerebral artery occlusion. By immunohistochemistry, we characterized cells expressing stem/progenitor cell markers in the peri-infarct area. We isolated cortical stem/progenitor cells from the peri-infarct area after distal middle cerebral artery occlusion and assayed their self-renewal and differentiation capacity. RESULTS In contrast with cortical/striatal strokes, focal cortical strokes did not induce neuroblast migration from the subventricular zone to the infarct zone after distal middle cerebral artery occlusion. By immunohistochemistry, we observed subpopulations of reactive astrocytes in the peri-infarct area that coexpressed radial glial cell markers such as Sox2, Nestin, and RC2. Clonal neural spheres isolated from the peri-infarct area after distal middle cerebral artery occlusion differentiated into neurons, astrocytes, oligodendrocytes, and smooth muscle cells. Notably, neural spheres isolated from the peri-infarct area also expressed RC2 before differentiation. CONCLUSIONS Mild cortical strokes that do not penetrate the striatum activate local cortical stem/progenitor cells but do not induce neuroblast migration from the subventricular zone niche.
منابع مشابه
Sonic hedgehog signaling pathway mediates cerebrolysin-improved neurological function after stroke.
BACKGROUND AND PURPOSE Cerebrolysin, a mixture of neurotrophic peptides, enhances neurogenesis and improves neurological outcome in experimental neurodegenerative diseases and stroke. The Sonic hedgehog (Shh) signaling pathway stimulates neurogenesis after stroke. The present study tests whether the Shh pathway mediates cerebrolysin-induced neurogenesis and improves neurological outcome after s...
متن کاملSelf-renewal and differentiation of reactive astrocyte-derived neural stem/progenitor cells isolated from the cortical peri-infarct area after stroke.
In response to stroke, subpopulations of cortical reactive astrocytes proliferate and express proteins commonly associated with neural stem/progenitor cells such as glial fibrillary acidic protein (GFAP) and Nestin. To examine the stem cell-related properties of cortical reactive astrocytes after injury, we generated GFAP-CreER(TM);tdRFP mice to permanently label reactive astrocytes. We isolate...
متن کاملElectro-acupuncture exerts beneficial effects against cerebral ischemia and promotes the proliferation of neural progenitor cells in the cortical peri-infarct area through the Wnt/β-catenin signaling pathway
Electro-acupuncture (EA) is a novel therapy based on combining traditional acupuncture with modern electrotherapy, and it is currently being investigated as a treatment for ischemic stroke. In the present study, we aimed to investigate the mechanisms through which EA regulates the proliferation of neural progenitor cells (NPCs) in the cortical peri‑infarct area after stroke. The neuroprotective...
متن کاملIsolation, Characterization and Differentiation of Rat Adipose Tissue Derived Mesenchymal Stem Cells
Introduction: Mesenchymal stem cells have the potential of self-renewal and differentiation into different cell types, including blood cells, heart, nerves and cartilage, and have unlimited power for division. These cells can be obtained from cord, before implantation from fertilized cells and also from various tissues of adults although the differentiation power and the ability to reproduce ...
متن کاملBone Marrow Stromal Cells With Exercise and Thyroid Hormone Effect on Post-Stroke Injuries in Middle-aged Mice
Introduction: Based on our previous findings, the treatment of stem cells alone or in combination with thyroid hormone (T3) and mild exercise could effectively reduce the risk of stroke damage in young mice. However, it is unclear whether this treatment is effective in aged or middle-aged mice. Therefore, this study designed to assess whether combination of Bone Marrow Stromal Cells (BMSCs) wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Stroke
دوره 41 9 شماره
صفحات -
تاریخ انتشار 2010